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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1341

A SIMPLIFIED METHOD OF ELASTIC-STABILITY
ANATYSIS TOR THIN CYLINDRICAL SHUELLS
I - DONNELL'S EQUATION
By S. B. Batdorf

SUMMARY

The equation for the equilibrium of cylindrical
shells introduced by Donnell in NACA Report No. 4%9 to
find the critical stresses of cylinders in torsion is
applied to find critical stressee for cylincers with
simply sunported edges under other loading conditions.

It is shown that by this method solutions may be obtained
very eesily and the results in each cace may be expressed
In terms of two nondinensional paramcters, cne dependent
on the critical stress and the other essentlally deter-
mined by the gcometry of the cylinder. The influence of
boundary conditions relatcd to edge displacements in the
shell median surface is discussed. The accuracy of the
solutions found is establiched by comparing them with
previous theorctical solutions snd with test results.

The solutions to a number of problems concerned with
buckling of eylinders with simply supported edges on the
basis of a unified viewpoint arc presented in a convenient
form fer practical usec.

INTRODUCTION

The recent cmphasis on sircraft designed for vsry
high speed has resultcd in a trond toward thicker skin
oand fewer stiffening elements. Ag a result of this
trend, a larger fraction of the load is being carried by
the skin and thus ablility to predict accurately the
behavior of the ckin under load has bocome more impor-
tant. Accordingly, it was considered desirable to proc-
vide the designer with more¢ information on the buckling
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of curved cheet than has been aveilable in the past. In
carrying nut a theoretical vesearch nrogram for this pur-
pose, a method of analysis was developed which is beliecved
to be simpler to apply than those generally appearin, in

the literature. The specific problems solved as a part

of this research prozgram are treated in detail in other
papers. The purpose of the present investigation, which is
discusced in two pavers,is toc present the method c¢f analysic
that was developed to solve these problems. In the precsent
paper the method 1s briefly outlined and applied tc a number
of the simpler problems in the buckling of cyllndrical
shells. In refercnce 1 the method is generalizcd for
application to more complicated pronlems.

THEORETICAT, B CXGROUND

In most theoretical truatments of the »uckling of
cylindrical shells {see references 2 to 4) *hree simul-
taneouo partial differential equations have been uscd to
express the relationship between the componcnts of shell
medlan-curface displacement w, v, and w in the
axial, circumferential, and radial directions, recpec-
tively. Mo general agreement hzas been reached, however,
on just whalt these equations should be. In 1934 Donnell
(reference &) pointed out that the dlflerences in +the
various sets of equations aroszse from the inclusion or
omlssion of & number of relarnively unimportant terme
(referred to in the present paper as hlgher crder terms),
and proposed the use of simpler ecquatisns in which only
the most essential terms (first-order terms) were retained.
The omitted terms were chown to be small, and thus the
ulmplified cquations to be apnlirable, if the cylinders
nave thin walls and if the sguarc of *hc rumter of cir-
cumferential waves is large comparcd with unity., Donnell
further showed that the three simplificd egquations can
be transformed into a azingle cighth-order partial dif-
ferential cquation in w  (sce ampendix A ~f the nresent
parer) in which the effects of the displacaments u
and v arc propcrly taken into account; this cquation
will hereinafter be referrcd to as Donncll's egquation.

When highcr-order terms arc included in the threc
partial differcntial equations previously mentioncd d, tho
resulting theorctical buckling stresscs are urually very
corplichtcd functicns of thz cyl nder dimcnsions and the
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elastlc properties of the material., A family of curves
is ordinarily drawn glving the critical stress as a
function of the length-dlameter rsetio for specified
values of the radius-thickness ratio and for given
elastic properties (references 3%, li, and 6). When the
higher-order terms are omitted irom the eguatlons and

the requirement of an integral number of circumferential
waves 1s removed, new parameters can ve introcduced wiilch
combine the cylinder dimensions and materlal properties
in such a way that the results can be glven in terms of

a single curve. These¢ parameterrs have besn ussd, with
8light variations in detaill, by Donnell, Kromm, Leggett,
and Redshaw (references 5 and 7 to 10). The omission of
the higher-order terms also greatly simplifies the cal-
culations, and the calculations are simplest if Donnell's
equation, rather than the set oI three simultaneous egua-
tions, 1s employed. Donnell!'s equation, or an eqgulvalent
equation, may therefore be presumed to be the most prom-
1sing for use in solving hitherto unsolved problems in
the stability of cylindrical shells.

Tn spite of the fact that it was introduced some
time ago, Donnell's equation has not achieved the wide
acceptance for use 1n the stability analysis of cylin-
drical shells which it anpears to merit. Some investi-
gators have continued to use sinultaneous differential
equations in which higher-order terms apvpsar, presumably
on the assumption that the errors arising from neglect
of these terms might be undesirubly large. Qtners have
dropped second-order terms but have continued to employ
simultaneous equations, probably in order to specify
directly edge-restraint conditiorns having to do with
dlisplacements in the axial and circumferential directions,
which cannot be done with Donnell's equation.

The purposes of the present paper are to establish
the accuracy of the equation by comparing the results
found by the use of Donnell's eguation wlth the results
found by other methods and with experinmental results and
to iInvestigate the question of boundary conditions on u
and v. The additional purpose is achieved of presenting
the solutions of a number »f problems concerned with
buckling of cylinders withh simply supported edges on the
basis of a unified viewpoint and in a convenient form
for practlical use. In reference 1 Donnell's equation is
mecdificd to facilitate selution of problems conccrncd
with rchells having clampcd cdges.



SYIIBOLS
a length of curved panel
b vidth of curved panel
d diameter of cylinder
mn, n integers
p lateral »nressure
r radiug of cylindrical shell

ct

thiclkness of c¢ylindrical shell
J

u displacement in axial (x-) cdirection of voint
on shell median surface

v displacement in circumferential (v-) direction
of rolnt on shell median surface

w displacement in radial direction of point on
shell medlian surface; positive outward

X ‘axial coordinate
Yy clrcumferential coordinate
8mns Pmn |
numerical coefficlents
Cmns dan /;tLZ
kg shear-stress coefficient for cylinder or
tb2 D@
I for infinitely long curved strip
D2 )
oL t12
ky axial compressive-stress coefflcient -
5. tb? D@
for cylinder or =~ for infinitely long
Dt
curved strip
X circunferential comoressive-stresg coefficient

o,tL Oyt
(\\J forcylinder or -~ for infinitely

Dre \\ Drr
long curved strip
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prL2

Cp hydrostatic-pressure coefficient >
D

W, amplitude of deflection function

D plate flexural stiffness per unit length

(j Et3
12(1 - u2)
E Young's modulus
P Airy's stress function for the median surface

stresses produced by the buckle deformation

L length of cylinder

/12
Z curvature parameter \L?-Vl - 4@ for cylinder
r
S
or — V1 - 42 for inrinitely long curved
r

strip)

B L/\N for cylinder or b/N for infinitely long
curved strip

A half wave length of buckles; measured circumfer-
entially in cylinders and axially in infinitely
long curved strins

2 dimensionless axial coordinate (x/b)

n dimensionless circunferential coordinate (y/b)
H Poisson's ratio

T applied shear stress

Oy applied axial stress, positive for compression
Oy applied circumferential stress, positive for

compression
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BUCKLING STRESSES OF CYLINDERS WITH STMPLY SUPPORTED EDGES

Lateral pressure.- The theory for the lateral pres-
sure f(uniform external pressure applied to walls only)
at which a cylinder will buckle is given in appendix B
in which it 1s assumed that the latersl pressure causes
the buckling by »roducing a circumferential stress Oy

and that it affects the buckling in no other way. The
results are shown in a lecgarithaic plot in figure 1. The

orcinate in this figure is the stress coefficient ky

whicn appears in the flat-plate buckling equation (see,
for example, reference li, p.3%%9)
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(The cdiscussion given in the section of the present paper
entitled "Parameters Appearing in Buckling Curves" shows
the relationship between a cylinder of length L and an
infinitelr long flat plate of width b = L.) The abscissa

2 2
z = L= 1-p2=(—1'-\\-13\’1-u2
rt \r/ t

may be regarded either as a measure of the curvature, or,
for any given ratio of radius to thickness, as a measure
of the length-radius ratio of the cylinder. Pfigure 1

shows that for small curvature ky approaches the value L.,

which apnlies in the case of simply supported long flat
rlates in longitudinal compression (reference L, p. 327).
As the curvature parameter Z increases, the stress coef-
ficient ky also lncreases. Hor large values of Z,

the curve approaches a straight line of slope 1/2. This
straight line is expressed by the formula

1/2
ky = 1.04L42 /

48 the length-radius ratio increases, for a glven
value of r/t, the number of circumferential waves n
diminishes. Althougn n must be an integer, the curves
of figure 1 were obtained on the assumption that n 1Is
free to vary continuocusly. Only small conservative
errors are involved in this assumption. Because n = 1
corregponds merely to a lateral displacement o>f the entire
clircular cross section, the minimum value of n 1s 2,
which corresponds t> deformation of the section into an
ellipse. This limitation on n results in splitting
the curve of figure 1 into a number of curves for dif-
ferent values of r/t when Z becomes large. Thick-
.walled cylincers may reach n = 2 at moderate lengths,
but thin-walled cylinders reach n = 2 only when much
longer than they are likely to be in practical construc-
tion. :

In figure 2 the curve of figure 1 1s compared with
results based on more complicated calculations given in
reference || and in reference 6. At fairly large values
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of Z the results given in reference I and in refer-
ence 6 are in googd agreement with the results of the
present paper. At small values ¢f Z the curve based
on reference 4 (Timoshenko) is definitely too low,
because ky should approach the flat-plate value of [
as 4 approachies zero. An interesting feature of the
comparison is that one calculation gives results below
and the other calculation results above, those glven
herein. The test data, taken from reference 6, are in

reasonable agreement with and show more scatter than the
thenretical curves. :

In the case of cylinders so long that n = 2, the
requirement for the validity of Donnell's equation

2
that n= >>» 1 is nn longer satisfied and appreciable
error is to be expected. 1Indeed it may be shown that for
very long cylinders when n = 2 Donnell's equation

gives LLD/r5 as the critical value of the applied
lateral pressure, whereas the accepted theoretical result

1s 3D/r? (by use of the formula given on p. LS50 of
reference l). The curves for n = 2 will probably not
ten be needed, however, since they apply only when

of

L\ 2 §§) . PR s

(;) > \%7, which in the case of thin cylinders
corresponds to a very large length-vradius ratios, and if
needed, the curves for n = 2 can be applied in con-
Junction with & correction factor 0.75.

axial compression.- The thecry for the axial stress
at which a cylinder will buckle is given in appendix B,
and the results are shown in figure 3. The ordinate is
analogous tc, and the abscissa identical with,the corre-
sponding ccordinates used in figure 1. Figure % shows
that for small values of Z, kx apprcaches the value 1,
which applies in the case of long flat plates in trans-
verse compression with long edges simply supported
(reference ). For large values of 7, the curve
becomes a straight line of slope 1. This straight line
is expressed by the formula

NE

—=g = 0 ,7022

e = A
X~
e



NACA TN Yo, 15L1 9

‘For any fixed value of r/t some value of 2 always
exists above which L/r is so large that the cylinder
fails as an ‘luler strut rather than by buckling of the
cylinder walls. Pin-ended Euler buckling of cylinders
is indicated in figure 3 by means of dashed curves.

The result just glven for the critical-stress coef-
ficient for a cylinder in axial compression leads to the
following expression for the critical stress:

Et (1)

e

¢}

=t o ste =

- 1
S Y G

The value given in equation (1) for the critical stress
of a nioderately long cylinder in axial compression by
use of Donnell's egquation is identical with the value
found by a number of 1investigators using other equations
as'.starting points (references 2 to ). In the case of
cylinders uncer axial compression the errors involved
in dropping the second-order terms are therefore con-
cluded to be small.

The buckling stresses given by equation (1) are
nevertheless in serious disagreement with the buckling
stresses obtained by experiment (reference 1ll). For &
discussion of the degree of correlation that can be found
between theory and experiment for cylinders under axlial
compression, see reference 12.

Hydrostatic pressure on closed cylinders.- When
closed cylincers are subjJected to external pressure, both
axial and circumferential stress are present. The theory
for buckling under these combined loads is given in
appendix B, The results are shown in figure L. The
orcdinate Cp used in this figure 1s a nondimensional

measure of the pressure p defined as follows:

prL2

Cp = =
p ﬂaD
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The coefficlent Cp can be directly related to the
corresponding stress coefficients ky and ky. By
definition |

OytLe
g o= 2

v sz

and, according to the hoop-stress formula,

_ pr
% T %

It follows from the three preceding eguations that Cp,
is numerically equal to ky. Similarly Cp can be shown
to be numerically egual to Z2kx.

At low values of Z, Cp approaches the value 2,
which implies that kx = 1 and ky = 2. That these
values of k ©represent a critical combination of stresses
for an infinitely long flat plate was shown in refer-
ence 1l3. At large values of Z, the curve approaches
the curve given in figure 1 for buckling under lateral
pressure alone and, like that curve, has bpranches
representing buckling into two circumferential waves.

In figure 5 the computed values of the pressure
coefficient Cp at which the cylinder would buckle if
only the axial pressure were acting and if only lateral
pressure were acting are compared with the results when
both are acting because of hydrostatic pressure. At
large values of I the circumferential stress at which
buckling occurs under hydrostatlc pressure is substan-
tially the same as it wnuld be il no axlal stiresg were
present, as iIn the case of lateral pressure. The reason
that the circumferential stress appears as the main factor
in buckling at high values of Z presumably is that at
these values of Z the axlal stress required to produce
buckling is many times the circumferential stress required,
whereas under hydrostatlc pressure the axial stress
actually present is only one-half the circumfierential
stress.
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In figure 6 the curve of figurs l: 1s compared with
curves renresenting 3turm's thuozetLJ¢l results (refer-
ence 6) and with a curve based on the following formula
developed at the U. S. Exncrimental Nodel Basin (refer-

\

ence 1lli, equation (9)):

/%
o UPE (")
p = -

3/4 yé
:2) Z- 05 (g)

This formula i3 an anproximation tased on, tneore*lcal
results obtained by von Mises (refersnce 4, p. 479) which
are identical with the results in the present paper for
buckl;ng under hydarostatic pressvre. Figure 6 shows that
Sturm’'s theoretical results (reference 6) are in reasonable
agreement with thoss of tne present paper and that tne
formula from the U. 8. Exverimental }odel Busin practi-
cally coincides with the present resualts excepnt at very

low values of 2.

Test results from references 6 and 1l are included
in figure 6. The test cdata are in good azreement with
the theoretical results except at low values of the
curvature naramever o at which the theoretlical resuits
are appreclably atove those obtained experimentally. A
possible exnlanation »f the discrepancy between the
theoretical and experimental results at low curvature is
suggested by the relative importance of axial and clrcum-
ferential stress in causing buckling. The axial stress
becomes important only at low values oi’ the curvature
parameter Z. It 1s known ex er¢mcntally that buckling
under axial stresses may occur far below thne theoretical
value of the critical stress. At low values of %
cylinders under hydrostatic pressure nay thereflore be
expectec to buckle well belnw tne theoreticul critical
load just as cylinders do under axial compression.

Torsion.- The prnblem of the cetermination ol the
buckling stresses of cylinders in torsion was solved by
Donnell (reference 5) who gave an approximate solution
of the equation of equilibrium. a4 somewhat more accurate
solution of this equation 1s given in reference 15. The
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essential results are shown in figure 7 taken r'rom refer-
ence 15, At low values of 2 the buckling-stress cceffi-
clent kg approaches the value €.3i appropriate to
infinitely long flat plates loaded in shear (reference 16).
At higher values of 2z the curve approuches a straight
line given by

Kg = 0.65.23/LL

At very high values of the curvature parameter the curve
splits up into & number of other curves, depending on the
value of r/t. The curves for varlous r/t values at
high values of 7 represent buckling inte two circum-
ferential waves. As mentloned before, Donnell's eguation
is not reliable for the case n = 2 (& case which occurs

P

T
i

for cviinders in torsion when (— > 10

P
=). A solution

r t
for this case gilven by Schwerin and discussed in refer-
ence 5 results in critical stresses about <0 percont
below those of the present paper. Because Schwerin's
solution does not satisfy the concition w = 0 &t the
end of the cylinder, however, it is vprebable that the -
error in the present solution for n =< Is less than . -
20 percent. -

In expcrimental investigatlions of eylinders in
torsion the maximum rather than the critical loads have
usually been reported. Eecuause these maximum loads
usually exceed the critvical loads by only a small margin,
1t is common practice to check theoretical bucxkling
stresses by comparison with the averagc stresses at
maximum load. Such a comparison is proviced in figurse G
which incormerates test data from references 5, 11, 17,
and 18. For this figure the test results average about
15 percent below those given by theory.

DISCUSSICH

Parameters anpearing in buckling curves.- The fact
that The buckling of & cyiinaer under uxial compression,
lateral pressure, hydrostatic pressure, or torsion
involves substantially the same parameters is not a mere
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coincidence but 1s a direct consequence of the differential
equation. The ‘differential equation implies that when the
requirement of an integral number of circumferential waves
is removed the six variables L, r, t, E, u, and the
load may be combined into two nondimensional parameters,
one (kx, Ky, kg, or Cp) describing the stress condi-

tion, and the other (2) essentially determined by the
geometry. (See appendix C.) It is also shown in appendix
that the buckling of a curved rectangular plate of any
given length-width ratio may be representecd in terms of
these parameters. The critical stress of a cylinder or

a curved plate of given length-width ratio may therefore
be given by a single curve relating the two parameters
provided that the number of circumferential waves may be
regarded as continuously variable. This restriction
becomes important at very large values of 2, for which
the curves may split into a number of curves for cylinders
of different values of r/t buckling into two circum-
ferential waves.

Except for hydrostatic pressure, each type of loading
considered results in a single uniform stress 1in the
cylinder, and the nondimensional rarameter k describing
this stress 1s defined as follows in analogy to the
parameter used in describing the buckling of a flat plate:

o (or 1)
n2D
Lot

k =

As the radius of the cylinder increases toward infinity
(the other dimensions remaining constant), the cylinder
approaches an infinitely long flat plate of the same
thickness as the cylinder, having a width b equal to
the length I of the cylinder. Accordingly, as the
radius avproaches infinity, the critical-stress coef-
ficient k for the cylinder approaches the value of the
corresponding stress coefficient for an infinitely long
flat plate under the appropriate loading condition.

The other nondimensional parameter Z 1is defined
by the equation
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2 [ 2 p
7= - 2= (L) Lo 2

If the small correction due to Poisson's ratio 1is
neglected, a direct pnysical significance can be assigned
to Z when i1ts magnitude is small. The maximum distance
from a slightly curved arc of length I and radius r

to its chord can be shown to be given by the expres-

sion 12/8r, which Is called the "bulge" by some writers
(see references § and 10). Accoriingly, in the case of
a curved strip of length I in the circumferential direc-

tion, I7/8rt is the bulge divided by the thickness and
is thus & nondimensional measure of the deviation from
flatness of the strip. As apvlied to a short cylinder,

L2/8rt is the deviation from flatness of a square panel
of the cylinder, each side of which is equal to the length
of the cylinder. ¥or cylinders naving a length greater
than a few tenthis of the diameter, the parameter 2

loses this simple physical significance and is perhaps
best regarded as a nondimensional measure of the length

of the cylinder. Some indication of the variety of
cylinder shapes corresponding to a fixed value of 7

is given in figure 9.

Boundary conditions.- When problems in the stabllity
of c¢ylindrical shells are solved by the use of Donnell's
equation, boundary conditions on u and v cannot be
imposed directly because only w anpears 1in the equa-
tions. The method of solution, however, may in some cases
imply boundary conditions on u or v. In appendix D
1t is shown that for simply supported cylinders the method
used in the present paper {(a solution using one or more
terms of a Pourier series satisfying the boundary condi-
tlons cn w term by term) Implies that at both ends of
the cylinder the circumferential displacement v is
zero, but that the cylinder edges are free to warp in
the axial direction (u ¥ 0). For a simoly supported
rectangular curved panel, the nresent method implies
(with regard to disvlacements within the nanel median
surface) zero displacement along the four edges of the
panel and free warping normal to the edges. Thess edge
conditions on u and Vv are appronriate to cylinders
or panels boundec by light bulkheads or deep stiffeners
which are stiff in their own planes but may be readily
warped out of their planes.
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Felatively few calculations of the stability of =
cylinder take intc account the boundary conditions on u
and v. A calculation for the case of torsion, however,
was recently made by Leggett (reference 19). The results
of this calculation, computed for u = v = 0 at the
edges of the cylinder, are given only for 2 < 50.
Throughout the range for which they are given, however,
they agree very closely with the results found by the
method emnloyed in the present paper, which impllies thet
at the edgc of the cylindoer v = 0 and w # 0. Restraining
the ends of the cylinder from warping In the axial direc-
tion may therefore be assumed to have & negligible effect
upon the buckling stress. This assumption rcceilves
added support from. the form of the cquation of equilibrium
glven in appendix A

, 2 2 2 6217‘1
DViw + p + t cx-——bw+21 OW_ 5 &E

ox
In this equation, ox* Oy’ and ¢ are the strcases
| 3°F
present Just before buckling and ——5 is the circum-
ox

ferential stress produced by the buckling 1itself. The
equation indicates that the only difference between the
buckling bechavior of a cylindrical sheet and that of a
flat plate (found by omitting the last term in the forc-
golng equation) 1s due to the effect of the clrcum-
ferentlal stresses caused by the buckling deformatlons,
Because the restralnt against warping in the axiel direc-
tion requires the application of axial rather than circum-
fercntial stressecs, this restraint might be expected to
have only small effects cn buckling stresscs. Circum=-
ferential stresses would have to be applied to the
stralght sides of a curved strip to prevent warping normal
to these edges during buckling. Because the circum-
ferential stress due to buckllng appears cexplicitly in

the equation of equilibrium, the impositlon of the
restraint v = 0 to the straight sides of & panel should
have an appreciable effect on the buckling stress (except
when the straight sildes of the panel are short comparecd
with the curved sides).

. Thecretical results on the buckling of curved strips
Infinitely long in the axial dircction are avallable to
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test the foregoing conclusion. 1In figurc 10 thce critical
axial compressive stress for an infinitely long curved
strip with u and v Dboth zero aiong the edges (refer-
ence 9) is compared with the critical axial compressive
stress when u 1is zero along the edges, and the edges
are free to warp in the circumferential direction. (See
appendlx B for solution.) The critical axial stress is
appreciably increased by the constraint v = 0 in a
certain range of small curvature. In figure 11 the
critical shear stresses are compared under the same sets
of edge conditions (references 7 and 8). The critical
shear stress is coneplcuously increased by the con-
straint v = 0 except near the limiting case of flat
plates,

It appears from the foregoing discussion that the
effect on the buckling stresses of preventing free warping
normal to the curved edges of a cylinder or panel 1s very
small but that the effect on the ouckling stresses of a
similar restraint on the straight ¢dges of a pansl may
be quite important.

Simplicity of results.- The theoretical results
based on Donnell's equation for the critical stresses of
cylinders under a given loading condition appear par-
tlcularly simple when presented as = logarithmic plot of
buckling coefficlent k against the curvature varameter 7.
As r approaches infinity, and tanerefore ss 7 apnroaches
zero, k approaches the value appropriate to a flat
plate. At large values of 7 the curve aprroached s
straight line in each of the cases investigated. These
straigrt lines had slopes 0.5, 0.75, and 1 and are given
apnrroximnately by the following equations which have
alreacy veen glven in the present paper &ancé are reassembled
here and provided with upper and lower limits for easy
reference:

- ~

ky = 1.01;7.'L 100 < zZ < 5(%)2 (1 - uz)
kg = 0.8523/4 50 < 7 <1o(-‘§>2 (1 - p-z)
o . r\e 2
ky = 0.702Z 3< Z2< 6 (;E) (l - W )
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These equations can also be written (when p 1s taken

to be 0,316)
0y = 0,926 %E (%5)1/2 0. 926E(§>3/2(£) (100§<<§>2< 59

T =0.7h7 E;’E C—E)ML = 0. 714713(2)5/1"@)1/’4 60 ;-f< G)2< 109

Ox= 0,608 <§ §< (92< 5%)

]

dlg

CONCLUDING HIMARKS

The use of Donnell's equation to find the buckling
stresses of cylindrical shells leads to simpler results
and involves less labor than the use of equations in
which second-order terms are retained. The buckling
stresses found by use of Donnell's equation are in
rcasonable agreement wlth results based on other theo-
retical calculations. Excent for the case of axial
loading, they are also in reasonable agreement with test
results,

Boundary conditlons having to do with axial snd
circumferential disvlacements cennot be handled directly
by use of Donnell's equation. This dlisadvantage 1s not
considered serious, however, because the boundary condi-
tions on axlal and clrcumferential displacement, which
are implied by the simple solutions given, correspond
approximately to those that are most likely to occur in
practical ccnstruction and because in many cases the
buckling stress is not very sensitive to these boundary
condl tions.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langlev Field, Va., March 20, 19L7
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APPENDIX A

SIMPLIFIED EQUATIONS OF EQUILIBRIUM FOR

CYLINDRICAL SHELLS

The vrincipal sets of simplified equations currently
in use for the equilibriunm of cvliindrical shells are

listed for converient reference.

equations are equivalent.

the equations are derived are also listed.

The various sets of
The reference papers in which
The equations

given are generally not lddﬂthdl witii those in the refer-

ence papers

but are modirl

ied in certain respects to

include all the 1oad1ng conditions studied in the present

paper or to put them in the

The three following
placements u, v, and
the conditions of static

w

natation of the nresent paper.
simultaneous enuations in dis-
(reference L) are derived from
equilibriwna:

- .82 < O v
&2y + 1 g Oy + 1+ 4y C%v ¢ B OV 0 (A1)
éxa 2 éyg 2 ébe P ox
v 2 - 2 ‘ \"-2 X
8%v 1 uéz+1+ubu+lfﬂ:o - (A2)
ey 2 ox? ¢ oxdy Toy
It "‘ 7 2 21 52
DVLLWJ. ! 5 —Y+p,(-)—1‘-141\+t0yé—w+2’f 27w O o + p=0C
r(l - 12)\oy ¢x r/ T xR 0x Oy yay2
(A3)

in deflecticn w and stress

are as {ollows:

Two simultaneous egquations
function F (reference 7)

‘ B 02y
yhe o+ 225 g o (ak)
r'éXE
2 2 ; NG
Dva+toxu+T 0w 62” 2 }; +p =0 (A5)
3x 8y yéya rﬂx
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A single equation in deflection w (Donnell's equation,
reference 5) 1s

, > \ 2
pvBw + EL b-ﬂmvu o -b-l+2r 52w +0 ofw +Vh’p:O (A5)
X N 5y2

The relationships between u and w and between v
and w are (reference 5)

3 B
poly = -, 02w, O (A7)
éx5 OX éy2
\ Y, o
r%v = - (2 + p) v o (A8)
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APPENDIX B
THEORETICAL SOLUTIONS

Donnell's equation for the equilibriw: of cylindrical
shells is used to investigate the stability of simply
supported cylinders subject to lateral pressure, axial
compression, and hydrostatic pressure, and of sinply
sunported curved strips long in the axial direction
subject to axial compression.

Cylinder under Lateral Pressure

If bending of the cylinder wall is neglected,
constant lateral pressure on a cylinder causes only
clrcu-ferential stresses. Donnell's equation (equa-
tion (A6)) then reduces to

Bt ahw 2
oy + I 7 4 aytol S = (3)
re 3 xi dye
whefe
- br
Uy" t

and p 1s the pressure applied. (The term Vhp avpearing
in equation (A6? i1s zero when p 1is constant.) Division
of equation (Bl) by D results, with proper substitutions,
in the following equation:

2 2 2
v8w+]:.g_z..§_!ig+kyrr_vh M'—‘O (B2)
b oxb 12 dye

The boundary conditions corresponding to simply supported
edges (no deflection and no moment along the edges) are
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w(0, y) = w(L, y) =0

d2w 32w
= (0, y) === (L, 7) = 0
dx2 dxe

A solution of equaticn (B2) satisfying the boundary condi-
tinns for simple suvport is

ny mmx
W = w,y sin 7? sin —E— (B3)

where A s the half wave length in the circunferential
direction. Combining equation (B3) and equation (B2)
yvields the following equaticn:

po e @) BB 2 R efee
s

The solution of eguation (Bl) for ky 1is

_ (w2 + §2)° 1272

+ (B5)
a2 w2 (m2 + 52)°

ky

where

e

B:

The critical value for ky is found by minimizing the
right-hand side of equatisn (B5) with respect to m

and 3. If the numerator and dengwinat?r of the last
term in eguation (55) are 4lvided by m", it becomes
evident that under the restriction of integral values
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of m, k., will be a minimum when m = 1. Equation (B5)
therefore” becomes

(1 + p2)° . 12z°
B2 whe2(1 + 62)°

ky =

(B6)

The results found bty minimizing this expression for ky

with respect to (¢ (considsred continuously variable)
is shown in figure 1 by the curve independent of r/t.

At low values of Z, buckling is characterized by
a large number of circumferential waves. As Z 1increases,
the number of circumferential waves decreasss until 1t

e

finally becomes two N = — |, corresponcdiang to buckling

into an elliptical cross section. The curves for buckling
into two cilrcumferential waves are shown in figure 1 as

the curves for various values of 1 - pz. The equa-

+ i

w
tions for these curves are found hy substituting in equa-
tion (B5) the last of the following expressions for f:

rw——

L 2L 2 7
B=x7 | w\r =
T\ -

Cyiinder in Axial Compression

When only axial stress is present, equsation (A6)
becomes

w N L‘_ P o
DVBW + ﬁ.z_ il + Gxt O 0 (B7)
r2 ol o x2

Division by D results, with proper substitutions, in
the following equation: :
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2 2 2
V8w + 122 Q&; + ky L vh»é_ﬂ
Lh Oxe 12 dx2

=0 (B8)

Combination of the deflection equation (B3) wlth equa-
tion (B8) yields the following equation:

(2 + )" + iéiémi ci? (2 4 82)° =0 (B9)

The solution of equsation (BY) for ky 1is
o (n2 + 2)2 | 12 7n®
* mé nh'(m2 + pa)a

The critical value of ky for a given value of Z
may be found by minimizing k, with respect to the
parameter

(2 + p2)°
me

If no restrictions are placed on the value that this
parameter can teke, the minimum value of ky 1s found

to be
Ky = Ejggz = 0,7022 (B10O)
L

which coincides with the results generally given for the
buckling of long cyllinders.,
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For values of Z below 2.85, however, the straight-
line formula (equation (B10)) cannot be use@ since it
implies either imaginary values of the c;rcumferential
wave length A or the number of axisl half waves m
below unity. The critical stress coefficient ky for

Z2 < 2.85 1s found by substituting the limiting values
=20 and m = 1 1n equsation (B9). The results are
shown in figure 3,

Cylirnder under Hydrostatic Pressure

Hydrostatic pressure applisd to & closed cylinder
produces the following axial and 01rpumferenb1dl stresses:

- Br
7% T 5y
¥ t

The equation of equilibrium (equation (A6)) when both
circumferential and axial stress sre present is (since

vhp

Mo

pn 2 it | \;.
it QEE + tvLL Sl + cytvL*L S, (B11)

o)
rl 5}()4, X be 3 2

DV8W +

o

By use of the definition

equation (Bll) can be written

2 Alby 2w 2.
70y 4+ 122 .Q-Ll + Cp — vll- (l 0 + o%w =0 (B12)
b oyl L2 2 OXZ 3y°
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If the deflection eguation (equation (B3)) is combined
with equation (Bl2), the following expression results
for O,

- Ope

Onz + 53)2 IZZZmA
p = +
2

5 /2
2 4+(m24-52yik%;+-5%)

(B13)

The critical value of Cp is found by minimizing the

right-hand side of equation (B13) with respect to m

and B, with due regard to the values which m and p
may assume., It can be shown that the iinimum value of C
is found by taking m equal to 1, so that equation (Bl3)
becomes

_ () 1272

Cp = - (B1L)
F % + g° wt (1 + p2)° (% + g%)

Equation (BllL) is equivalent to an equation derived by
von Mises (reference L, p. L79). The results of mini-
mizing C, with respect to (3 are shown in figure .

r
(The curves given for various values of T ql - pz hiave

the same significance as in the case of a cylinder
buckling under lateral pressure alone.)

Long Curved Strip in Axial Compression

Because it merely describes equilibrium at a point,
equation (Bl) applies to the buckling of a long curved
strip as well as to cylinder buckling. 1In modifying this
equation to obtain nondimensional coef'ficients as in
equation (B2), however, it is convenient to define kyx
and 72 in terms of the wicdth of the strip b rather
than in terms of the axial length L, which applied in
the case of the cylinder. Accordingly, equations (Bl)
and (B2) for a cylinder 1in axlal compression may be
applied also to the buckling of & curvecd strip, long in
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the axial direction, sublected to axial compression, pro-
vided the curved width L 1is everywhere sutstituced for
the axial length L. Substitutlon of the deflection

wxX .
w = w, sin -— sin -EZ

A

into equation (B2) (modified hy substitution of b
for L) gives

Ky = - + - (B15)

where

Equation (Bl5) is very similar to equation (B9) and
each equation ylelds the same critical value for Ky at
large values of 2. At small values of 2, the minimunm
value of ki is found by taking n = 1 1in eguation (B15)
and minimizing with respect to 3 the resulting expres-
sion for k4. The results are given in figure 10 together
with results found by Leggett (reference 9).
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APPENDIX C

PARAMETERS

Tt is shown that Donnell's equatlon implies that
under certain limitations the buckling coefficlient k,
familiar from flat-plate theory, can be expressed 1in
terms of the curvature parametér 2 alone in the case
of a complete cylinder or a curvec rectangular panel of
given length-width ratlo.

Donnell's equation (A6) is {when p 1s constant or
zero)

o o 2
DV8w + E— Q__ + tvh é Yoy o7 O + O 0w - 0 (C1)
L 0X Oy y aya
Let
v "2
N
5 ="
and
2 2
VGZ_ 624-——'5
08"  am
Then

ft

. 2 2
7,2 = b2 (_9_ +_é___>

L2 2

OX oy

Multiplication of equation (Cl) by b8 and substitution
of the dimensionless coordinates & and n gives
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Lol 2, 2 32
nY.Bw + Etbl O 4 p2ey b @X OV | or -Q-—‘-"-wy —"—23 =0
N re yett \ de? 0g on on

s
-

Division by D results in

8., Bt ol v2¢ d°w d 2w 2w\ _
VG W+ Dr2 égﬁ + 5 VG Oy + 2T +G > =0

£t3
or, since D = s
12(1 - p2)

L". -~ Vo \.2. ‘\Zm 2,
v+ 1222 M+ndVG*/L<X C oy 2wk, SN -0 (c2)
- \ " a2 05 o1 Y a2
where
2
rt

Gy tbe

‘rtb2

Even without solving this equation it is clear that w
must be a function of the independent variables ¥ and n,

s
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and also the parameters Z, kyx, kg, and k,, and the

derivatives of w will be functions of the same variables
and parameters. Thus, if only one type of loading
(represented by the buckling coef "icient k) is present,
equation (C2) may be written

£1(8, n, 2, k) + 127°F5(&, m, z, k) + 1%kf5(E, n, 2, k) =0

(C3)

where fq, fp, and f3 are definite, though unknown,

functions. The veriables ¢ and v may now be eliminated
by integration of both sides of this equation over the
entire range of & and n. In the case of a curved panel
of circumferential dimension a and axial dimension b

the resulting equation is

a.
1 5
ag dn Lfl(g, n, 2, k) + 1222f,(&, n, Z, k)
0 0

+ "Pkf3(E, n, T, k)] =0 (ch)

The integrzls of the functions [y, fp, and I3
depend only upon Z, k, and the value of the ratio a/b.
Accordingly, equation (C4) implies that a relationship of
the following type exists:

fu(%, Z, %) = (C5)

Equation (C5) indicates that for any given value of the
pancl aspect ratio a/b, the critical-stress coeffi-
cient %k depends only upon 2.

If a complete cylinder of length I rather than a
panel of length b 1is under consideration, and the
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deflection w 1is periodic with wave length 2\ 1n the
circumferentlial coordinate, the integration

a
b

dn

appearing in equation (ClL) may be replaced by

SEI

where & and 71 are now defined as x/L and y/L,
respectively. The result then becomes

2A\ _
fs@, Z, Y)- O
k= f6<2, %k) (c6)

The actual buckling stress is found by minimizing k with
respect to 2\/L.

or

Theoretically, A mnmust satlsfy the equation
T = n\ (C7)

‘where n 1is the number of circumferential waves and
therefore an integer. When many clrcumferential waves
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are present, however, this restriction does not signifi-

cantly affect the buckling stress, and the miaimization
2N
of k with respect to %; (considered continuously

variable) leads to the result

Ke= f7(Z) (c8)

Equation (C8) indicates that provided the number of circum-
ferantial waves is nct too small the critical-stress coef-

ficient for a cylinder depends for practical purposes only

upon the curvature parameter 2.

When n 1is so small that its integral character must
be taken into account, it appears from eguations (C6)
and (C7) that k depends upon both Z and r/L. Since,

however,
A\2 A
Y ==L _ .2
(L) A A

k for small values of n can zlternatively be expressed

in terms of Z and % dl - p2, as in figures 1, l,

and 7.

=N

By a simllar analysis, it can be shown that when the
buckling of a cylinder under hydrostatic pressure 1is
represented by nlotting the pressure coefficient Cp

against 2, a single curve 13 obtained except where the
small number of circumferential waves requires splitting
the curve into a series of curves for different values

L 2
Oftl e
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APPENDIX D

BOUNDARY CONDITIONS ON EDGE DISPLACEMENTS

WITHIN THE MEDIAN SURFACE

The solution of Donnell's eighth-order partial dif-
ferential equation for the.stability of cylindrical shells
is not unique under the imposition of the ordlnary boundary
conditions for simply supported or clamped edges. Two
more boundary condltions at each edge, for example, one
conditicn for wu  and one for v, are required to define
completely the physical problem and are therefore needed
to make the solution unique. Because only w appears in
the equation, boundary conditions on u and v cannot
be Imnosed directly; they may, however, be implied by the
method of solution. The vurpose of this anpendix is to
show what boundary conditions on u and v are implied
by the method of solution used in the present paper. In
order to simplify the discussion, the analysis will first
be made for the case when only axial compression is
present and will then be extended to other cases,

When only axial stress is present, Dennell's equa-
tion (equation (a6)) beccomes

2
prly + EL W cxtvhu =

roex™ bxa

If the shell described oy this equation iIs a curved panel
with the origin of coordinates in one corner of the panel,
& solution satisfying the usual voundary conditions for
simple support is

. mmx nmy
¥ = wgy sin . sin < (D1)

where m and n are integers. This solution is also
the solution tn the problem of the buckling of an infinite
two-dimensional array of »anels identical %o the one under
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consideration. (See fig. 12.) When such an array buckles,
the displacements u, v, and w as well as the stresses,
described by the stress function P, may be presumed to
be parlodic over the interval 2a in the axial direction
and 2b in the circumferential direction.

Any function wu(x, y) that 1s periodic with a wave
lengtli 2a in the x-direction and with a wave length 2b

in the y-direction may be expanded as follows (see, for
example, reference 20)¢

& = ™ P
- N mmx nry
u = > &mn sin sin

[pe] oo
<SOS . mmx
+ > Z D sin — cos
[

|
o |3

(e} o0
< mix
+ ) E c cos —— sin

-

o . [o+]
+:i_ j{: dnn CO8 mX sos (D2)

“la

The relationship which must exist between u and w 1is
(equation (A7))

3
rvbu = - W 65W + o w

5x2 dx oy°
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Substitution into this equation of the expressions for u
and w from equations(D2) and (Dl), respectively, and
use of the orthogecnality of the functions in equation (D2)
leacds to the result

a7, muwx . n
s WX g4 B

E a2 212
BCORICN

u:

™

Accordingly, the boundary :onditions on u are

u{x, 0) =0 (D3)
u(x, b) =0 (Dh)
93 (0, y) =0 (D5)
53X
9U (4, 3) = 0 (D6)
0x

Similarly by use of eguation (A83) instead of equa-
tion (A7) it can be shown that the boundary conditions
on Vv &are

v(0, y) = 0 (D7)
via, y) =0 (DS)
2% (x, 0) = 0 (9)
oy
9V (x, b) = 0 (D10)
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The boundary conditions of equations (D5), (D6),
(D9), and (D10) may be combined to give four boundary
conditions on the stresses induced by buckling. These
boundary conditions, which are also derivable from equa-
tion (AE) by a method analogous to that just used to
derive the conditions relating to u, are

Q°F
— (0, y) =0 (D11)
S3
ry
i (a, y) =0 (Dl12)
oy
2
o°F (x, 0) =0 (D13)
NP
ocX
O2F
CX
O°F 32F
where =—— and N are, respectively, the median-
bya éX

surface axial and circumferential stresses caused by
buckling. The eight boundary conditions given by equa-
tions (D3), (D), (D7), (D8), and equations (D11)to (Dllk),
plus the eight boundary conditions on w for simple
support of the four panel edges taken together uniquely
determine the buckling stress.

Although the precedlng discussion of boundary condi-
tions started with the assumption of axial stress only,
the only use made of this assuaption was in obtalning
egquation (D1) as the solution ror the buckling deformation.
The same deformation, and hence the same arguments, apply
when circumferential stress is present. \hen shear 1s
present, a series »f terms of the type in equation (D1)
must be used to represent the deflection surface, and
hence series of terms ocecur in the expressions for wu,
v, and F. Since the boundary conditions derived in
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the preceding analysis apply to each of the terms indi-
vidually, by the principle of superposition they must also
apply for the sum, so that equations (D11) to (DlhL)
represent the boundary condltion no matter what the
applied stresses are,

In summary it may be stated that the substitution
of one or more terms of a double-sine-series expansion
for w into Donnell's equation and solution of the
resulting equation for the buclling stress glves the

solution corresponding to the following boundary condi-
tionss

(1) Each edge of the panel {(or cylinder) is simply
supported; that is, the displacement normal to the sur-
face of the panel and the applied moments are zero at
the edges.

(2) Motion parallel to each edge during buckling is
prevented entirely.

{3) Motlon normal to each edge in the plane of the
sheet occurs freely.
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Fig. 7

NACA TN No. 1341
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Fig, 8
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Fig. 9
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Fig. 10
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Fig. 11
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Fig. 12
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